On the added mass in a viscous incompressible fluid

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small moving rigid body into a viscous incompressible fluid

We consider a single disk moving under the influence of a 2D viscous fluid and we study the asymptotic as the size of the solid tends to zero. If the density of the solid is independent of ε, the energy equality is not sufficient to obtain a uniform estimate for the solid velocity. This will be achieved thanks to the optimal Lp − Lq decay estimates of the semigroup associated to the fluid-rigid...

متن کامل

Pattern Selection for Faraday Waves in an Incompressible Viscous Fluid

Abstract. When a layer of fluid is oscillated up and down with a sufficiently large amplitude patterns form on the surface: a phenomenon first observed by Faraday. A wide variety of such patterns have been observed from regular squares and hexagons to superlattice and quasipatterns and more exotic patterns such as oscillons. Previous work has investigated the mechanisms of pattern selection usi...

متن کامل

Nested Cartesian grid method in incompressible viscous fluid flow

Article history: Received 15 January 2009 Received in revised form 16 April 2010 Accepted 28 May 2010 Available online 8 June 2010

متن کامل

On the Numerical Solution of a Viscous Incompressible Electrically Conducting Fluid Flow over a Stretching Sheet

A numerical solution is carried out in this paper in order to study the steady laminar flow of a Newtonian electrically conducting fluid over a stretching sheet. The approach to this numerical solution is based on the idea of stretching the variables of the flow problem. Thereafter, we use the least squares method to minimize the residual of the “defect function”. Subsequently, this approximate...

متن کامل

Remarks on the Vanishing Obstacle Limit for a 3d Viscous Incompressible Fluid

In [4] the authors consider the two dimensional Navier-Stokes equations in the exterior of an obstacle shrinking to a point and determine the limit velocity. Here we consider the same problem in the three dimensional case, proving that the limit velocity is a solution of the Navier-Stokes equations in the full space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Доклады Академии наук

سال: 2019

ISSN: 0869-5652

DOI: 10.31857/s0869-56524885493-497